Mutations in Hedgehog Acyltransferase (Hhat) Perturb Hedgehog Signaling, Resulting in Severe Acrania-Holoprosencephaly-Agnathia Craniofacial Defects

نویسندگان

  • Jennifer F. Dennis
  • Hiroshi Kurosaka
  • Angelo Iulianella
  • Jennifer Pace
  • Nancy Thomas
  • Sharon Beckham
  • Trevor Williams
  • Paul A. Trainor
چکیده

Holoprosencephaly (HPE) is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17%) cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized that a graded series of facial anomalies occurs within the clinical spectrum of HPE, as HPE is often found in patients together with other malformations such as acrania, anencephaly, and agnathia. However, it is not known if these phenotypes arise through a common etiology and pathogenesis. Here we demonstrate for the first time using mouse models that Hedgehog acyltransferase (Hhat) loss-of-function leads to holoprosencephaly together with acrania and agnathia, which mimics the severe condition observed in humans. Hhat is required for post-translational palmitoylation of Hedgehog (Hh) proteins; and, in the absence of Hhat, Hh secretion from producing cells is diminished. We show through downregulation of the Hh receptor Ptch1 that loss of Hhat perturbs long-range Hh signaling, which in turn disrupts Fgf, Bmp and Erk signaling. Collectively, this leads to abnormal patterning and extensive apoptosis within the craniofacial primordial, together with defects in cartilage and bone differentiation. Therefore our work shows that Hhat loss-of-function underscrores HPE; but more importantly it provides a mechanism for the co-occurrence of acrania, holoprosencephaly, and agnathia. Future genetic studies should include HHAT as a potential candidate in the etiology and pathogenesis of HPE and its associated disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis.

Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip fusion. Mice carrying compound mutation...

متن کامل

Inhibitors of Hedgehog Acyltransferase Block Sonic Hedgehog Signaling

Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmi...

متن کامل

Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells

The Sonic Hedgehog (Shh) signaling pathway plays a critical role during embryonic development and cancer progression. N-terminal palmitoylation of Shh by Hedgehog acyltransferase (Hhat) is essential for efficient signaling, raising interest in Hhat as a novel drug target. A recently identified series of dihydrothienopyridines has been proposed to function via this mode of action; however, the l...

متن کامل

Boc modifies the holoprosencephaly spectrum of Cdo mutant mice

Holoprosencephaly (HPE) is caused by a failure to form the midline of the forebrain and/or midface. It is one of the most common human birth defects, but clinical expression is extremely variable. HPE is associated with mutations in the sonic hedgehog (SHH) pathway. Mice lacking the Shh pathway regulator Cdo (also called Cdon) display HPE with strain-dependent penetrance and expressivity, impli...

متن کامل

Attenuation of Hedgehog Acyltransferase-Catalyzed Sonic Hedgehog Palmitoylation Causes Reduced Signaling, Proliferation and Invasiveness of Human Carcinoma Cells

Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012